If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+122x-504=0
a = 1; b = 122; c = -504;
Δ = b2-4ac
Δ = 1222-4·1·(-504)
Δ = 16900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16900}=130$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(122)-130}{2*1}=\frac{-252}{2} =-126 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(122)+130}{2*1}=\frac{8}{2} =4 $
| -2t-4+5t=8+6t+3 | | 3x+3x-1=15 | | 5.1a+13=69.1 | | 6z-12=4z+4 | | 10s+15s+5=180 | | 2s-51=s | | 75+x/5=4x-1 | | 9/10b=18 | | 5–3n=3.5n-8 | | -8=b/3 | | 4v-76=180 | | 3^(x+3)=9 | | 3z=10z-49 | | 1-6=6+4r | | =5x−8 | | 6.51x+65.1=130.2 | | 3^x+3=9 | | -3x+18=15x | | 2v-74=v-7 | | 2(x+4)+6=18 | | -17x-6=12 | | x/2+11=2x-13 | | 3x^2+6=-120 | | 0.25-0.03(x+3)=-0.02(2-x) | | 4p-26=5p-42 | | 7-6(x-1)=7+2(7x-4 | | (1+w)^7=-w^2 | | 4(3+2y)+8y=12 | | 2^{3x}=1/64 | | s+32=9s+24 | | c+6=17c-10 | | -1/3(2x+3)=-4x+27 |